Randomized controlled trial of remote ischemic preconditioning in children having cardiac surgery

Children undergoing cardiac surgery are at risk for acute kidney injury (AKI) and cardiac dysfunction. Opportunity exists in protecting end organ function with remote ischemic preconditioning. We hypothesize t…  Read More

A multifunctional bio-patch crosslinked with glutaraldehyde for enhanced mechanical performance, anti-coagulation properties, and anti-calcification properties

J Mater Chem B. 2023 Nov 8;11(43):10455-10463. doi: 10.1039/d3tb01724a.

ABSTRACT

Bio-patches for the treatment of valvular disease have been evaluated in clinical trials. It has been shown that failure of these devices, occurring within a few years of implantation, may be due to cytotoxicity, immune response, calcification and thrombosis. Some of these effects may be due to the glutaraldehyde crosslinking process used in the preparation of the materials. A number of studies have focused on strategies to control calcification, while others have concentrated on the prevention of micro-thrombus formation. In the present work, we have introduced amino-terminated poly(ethylene glycol) (NH2-PEG-NH2) as an intermolecular bridge, which not only eliminates free aldehyde groups to prevent calcification, but also introduces sites for the attachment of anticoagulant molecules. Furthermore, PEG, itself a hydrophilic polymer with good biocompatibility, may effectively prevent protein adsorption in the early stages of blood contact leading to thrombus formation. After further covalent attachment of heparin, modified bovine pericardium (BP) showed strong anti-calcification (calcium content: 39.3 ± 3.1 μg mg-1) and anti-coagulation properties (partial thromboplastin time: >300 s). The biocompatibility and mechanical properties, important for clinical use, were also improved by modification. The strategy used in this work includes new ideas and technologies for the improvement of valve products used in the clinic.

PMID:37888984 | DOI:10.1039/d3tb01724a

Effects of duroplasty with bovine pericardium on fibrosis and extent of spinal cord injury: An experimental study in pigs

Rev Esp Cir Ortop Traumatol. 2023 Oct 5:S1888-4415(23)00199-6. doi: 10.1016/j.recot.2023.09.008. Online ahead of print.

ABSTRACT

INTRODUCTION: Traumatic spinal cord injury (SCI) leads to increased intraspinal pressure that can be prevented by durotomy and duroplasty. The aim of the study was to evaluate fibrosis and neural damage in a porcine model of SCI after duroplasty and application of hyaluronic acid (HA) in the tissue cavity.

MATERIALS AND METHODS: Experimental study. We created a porcine SCI model by durotomy and spinal cord hemisection of a cervical segment (1cm). Six pigs (Sus scrofa domestica) were used to evaluate three surgical scenarios: (1)control injury with dural reparative microsurgery, (2)duroplasty using bovine pericardium (BPD), and (3)previous method plus HA applied at the lesion. Animals were sacrificed one-month post-injury to assess fibrotic responses and neural tissue damage using conventional histological and immunohistochemical methods.

RESULTS: In the control case, dural suture prevented invasion of the lesion by extradural connective tissue, and the dura mater showed a 1-mm thickening in the perilesional area. The bovine pericardium patch blocked the entrance of extradural connective tissue, decreased dura-mater tension, and satisfactorily integrated within the receptor tissue. However, it also enhanced subdural and perilesional fibrosis, which was not inhibited by filling the lesion cavity with low- or high-molecular-weight HA.

CONCLUSIONS: Duroplasty prevents collapse of the dura-mater over the spinal cord tissue, as well as invasion of the lesion by extramedullary fibrotic tissue, without creating additional neural damage. Nevertheless, it enhances the fibrotic response in the spinal cord lesion and the perilesional area. Additional antifibrotic strategies are needed to facilitate spinal cord repair.

PMID:37802396 | DOI:10.1016/j.recot.2023.09.008